A Stabilized Incompressible SPH Method by Relaxing the Density Invariance Condition
نویسندگان
چکیده
A stabilized Incompressible Smoothed Particle Hydrodynamics ISPH is proposed to simulate free surface flow problems. In the ISPH, pressure is evaluated by solving pressure Poisson equation using a semi-implicit algorithm based on the projection method. Even if the pressure is evaluated implicitly, the unrealistic pressure fluctuations cannot be eliminated. In order to overcome this problem, there are several improvements. One is small compressibility approach, and the other is introduction of two kinds of pressure Poisson equation related to velocity divergence-free and density invariance conditions, respectively. In this paper, a stabilized formulation, which was originally proposed in the framework of Moving Particle Semi-implicit MPS method, is applied to ISPH in order to relax the density invariance condition. This formulation leads to a new pressure Poisson equation with a relaxation coefficient, which can be estimated by a preanalysis calculation. The efficiency of the proposed formulation is tested by a couple of numerical examples of dambreaking problem, and its effects are discussed by using several resolution models with different particle initial distances. Also, the effect of eddy viscosity is briefly discussed in this paper.
منابع مشابه
Simulation of Fluid-Structure Interaction using an Incompressible Smoothed Particle Hydrodynamics
Numerical simulations of fluid-structure interactions in free surface flows were conducted by using an Incompressible smoothed particle hydrodynamics (ISPH) method. In the current ISPH algorithm, a stabilized incompressible SPH method by relaxing the density invariance condition is introduced as Asai et al. (2012). The governing equations are discretized and solved with respect to Lagrangian mo...
متن کاملSimulation of Gravity Wave Propagation in Free Surface Flows by an Incompressible SPH Algorithm
This paper presents an incompressible smoothed particle hydrodynamics (SPH) model to simulate wave propagation in a free surface flow. The Navier-Stokes equations are solved in a Lagrangian framework using a three-step fractional method. In the first step, a temporary velocity field is provided according to the relevant body forces. This velocity field is renewed in the second step to include t...
متن کاملAn incompressible multi-phase SPH method
An incompressible multi-phase SPH method is proposed. In this method, a fractional time-step method is introduced to enforce both the zero-density-variation condition and the velocity-divergence-free condition at each full time step. To obtain sharp density and viscosity discontinuities in an incompressible multi-phase flow a new multi-phase projection formulation, in which the discretized grad...
متن کاملNumerical investigation of free surface flood wave and solitary wave using incompressible SPH method
Simulation of free surface flow and sudden wave profile are recognized as the most challenging problem in computational hydraulics. Several Eulerian/Lagrangian approaches and models can be implemented for simulating such phenomena in which the smoothed particle hydrodynamics method (SPH) is categorized as a proper candidate. The incompressible SPH (ISPH) method hires a precise incompressible hy...
متن کاملNumerical Investigation of Fluid Mixing in a Micro-Channel Mixer with Two Rotating Stirrers by Using the Incompressible SPH Method
Fluid mixing is a crucial and challenging process for microfluidic systems, which are widely used in biochemical processes. Because of their fast performance, active micromixers that use stirrer blades are considered for biological applications. In the present study, by using a robust and convenient Incompressible Smoothed Particle Hydrodynamics (ISPH) method, miscible mix...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Applied Mathematics
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012